
100

⁄
0021-9045/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.

Journal of Approximation Theory 115, 100–119 (2002)
doi:10.1006/jath.2001.3653, available online at http://www.idealibrary.com on

Convergence Conditions for Vector Stieltjes
Continued Fractions1

1 Research partially supported by INTAS 2000-272.

M. Castro Smirnova2

2 On leave from Havana University, Cuba.

University of Sevilla, Apdo. 1160, 41080 Sevilla, Spain
E-mail: mirta@us.es

Communicated by Walter Van Assche

Received January 8, 2001; accepted in revised form October 1, 2001

Necessary and sufficient conditions for the convergence of vector S-fractions are
obtained, generalizing classical results of Stieltjes. A class of unbounded difference
operators of high order possessing a set of spectral measures is described. © 2002

Elsevier Science (USA)

1. INTRODUCTION

A classical theorem of Stieltjes (see [10]) gives a solution to the problem
of the uniform convergence of the continued fraction

S(z)=
1

b1z+
1

b2+
1

b3z+z+
1

b2k−1z+
1

b2k+z

=
1|
|b1z
+
1|
|b2
+
1|
|b3z
+· · · , (1)

where b2k−1 < 0 and b2k > 0, k ¥N, on each compact subset of C0[0,+.).
Writing Sn for the nth convergent of S(z), one has

C
.

k=1
|bk |=.. Sn(z) —

nQ.
S(z),

z ¥K ı C0[0,+.). (2)



The S-fraction (1) can be written in the equivalent form

S(z)=
a0 |
|z
+
−a1 |
|1
+
−a2 |
|z
+· · · ,

−a2k−1 |
|1

+
−a2k |
|z
+· · · ,

where

ak=−
1

bkbk+1
, a0=

1
b1
. (3)

The Stieltjes continued fraction gives a formal expansion of the resolvent
function f (Weyl’s function) of the second order difference operator A,
which is the closure of the operator given by the tridiagonal matrix:

A=R
0 1 0 · · ·

a1 0 1 0 · · ·

0 a2 0 1 · · ·

0 0 a3 0 1 · · ·

0 0 z z

S , ak > 0, (4)

via the usual matrix product on the linear subspace C0 of the Hilbert space
l2(N), formed by the finite linear combinations of its standard basis ele-
ments e0, e1, ... . The operator A is the general prototype of a second order
difference operator. Assuming without loss of generality a0=1, for the
Weyl function

f(z)=O(zI−A)−1 e0, e0P=C
.

k=0

OAke0, e0P
zk+1

=C
.

k=0

fk
zk+1

we have the relations

f(z)=zS(z2), z ¨ (−.,+.),

f2k+1=0, k \ 0.

The convergence conditions of the Stieltjes functions, in terms of the entries
of the operator (4) or those of the continued fraction (1), are very impor-
tant in order to obtain the spectral properties of this operator, especially
when the operator is not bounded. The convergence of the Stieltjes con-
tinued fraction is equivalent to the unicity of the spectral measure of the
operator (4), and at the same time to the existence of a unique self-adjoint
extension for A. Taking into account equality (3), the divergence of the
series in (2) obviously gives a useful sufficient condition for the conver-
gence of (1), which can be written as
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C
.

k=1

1
ak
=.2 Sn(z) —

nQ.
S(z),

z ¥K ı C0[0,+.). (5)

2. THE VECTOR CASE

In order to obtain the spectral properties of the difference operator A, of
order p+1, given as the closure of the operator defined on C0 … l2(N) by
the infinite matrix

A=R
0 1 0 · · ·

0 0 1 0 · · ·

· · · · · · · · ·

0 0 1

a1 0 · · · 0 1

0 a2 0 · · · 0 1

0 0 z z

· · · · · · · · ·

S , ak ¥ C, (6)

vector generalizations of the Stieltjes fractions were given in [3],

SF (z)=(S1(z), ..., Sp(z))

=
(1, ..., 1, a0)|
|(0, ..., 0, z)+

(1, ..., 1, −a1)|
|(0, ..., 0, 1)+· · ·

(1, ..., 1, −ap)|
|(0, ..., 0, 1)+

×
(1, ..., 1, −ap+1)|
|(0, ..., 0, z)+· · ·

, (7)

where, according to the Jacobi–Perron algorithm, the product and quotient
of two vectors a, b of Cp are defined by the formulas

a · b=(a1b1, a2b2, ..., apbp),

1
a
=1 1
ap
,
a1
ap
, ...,
ap−1
ap
2 .
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The n-convergent of SF will be denoted by Sn
|Q

. Analogously to the scalar
case, the set of resolvent functions of the operator A,

fF=(f1, ..., fp),

where

f j(z)=O(zI−A)−1 ej−1, e0P=C
.

k=0

fk, j
zk+1
, j=1, ..., p,

which define the operators in a unique way, can be expanded in a vector
continued fraction (7). In this case, assuming a0=1, we have the relations

f j(z)=zp−j+1S j(zp+1), j=1, ..., p.

Bounded operators were considered in [3]. In particular, it was proved
that the condition

0 < ai < c, i ¥N (8)

is sufficient for the resolvent functions f j, j=1, ..., p, to be Markov func-
tions, represented as Cauchy transforms of measures supported on compact
subsets contained in the positive semi-axes of the real line [0,+.). The
bounded case was also considered in [9]. Taking into account the previous
assertions, it is easy to conclude that condition (8) implies the uniform
convergence of each component of the continued fraction (7) on every
compact subset of the complement of some compact set C … R+ in the
complex plane:

Sn
|Q

(z) —
nQ.
SF(z), z ¥K ı C0C.

3. CONVERGENCE RESULTS

In the present paper, we aim to generalize Stieltjes’ conditions for the
convergence of the vector S-fraction (7). The announcement of the results
of this paper has already appeared in [2]. Here we focus on the detailed
proofs. We have the following theorem:

Theorem 1. If

C
.

k=1

1
;p−1
j=0 ak+j

=., ak > 0, (9)

then Sn
|Q

—
nQ.
SF on each compact subset of C0[0,.).
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Proof of Theorem 1. For a given j, 1 [ j [ p , let S jn be the j th com-
ponent of Sn

|Q

. In order to prove Theorem 1, according to Vitali’s theorem
(see [6, p. 341]) it is enough to show that (S jn)n \ 0 is uniformly bounded on
each compact subset of C0[0,+.) and that

S jn(x)|0
nQ.

S j(x), x ¥ (−., 0).

The proof of the fact that the convergents of the fraction (7) form a normal
family in C0[0,.) follows directly from the results of [3, Sect. 6.1]. For
the sake of completeness we will present here some details. We write

S jn(z)=
An, j
An, 0
(z), 1 [ j [ p.

The polynomials An, j(z), for all j ¥ {0, ..., p}, as denominator and numera-
tors respectively of a vector continued fraction, satisfy the recurrence
relation (see [3, 4, 8])

An+1, j=enAn, j−an−p+1An−p, j, n \ p

where

en=˛
z, n=k(p+1),

1, otherwise.

The initial conditions are

A0, 0=1, Ai, 0=z, A0, i=0,

and

Ak, i=˛
1, k \ i,

0, otherwise,
i=1, ..., p.

It is clear from the previous relations that each An, j, 0 [ j [ p , is a monic
polynomial and that

deg An, 0=5
n+p
p+1
6 ,

deg An, j=deg An, 0−1, j ¥ {1, ..., p}. (10)

For each n let m=m(n) denote the degree of the common denominator
An, 0 of every component of Sn

|Q

and xi, m, 1 [ i [ m, its zeros. In [3, Lemma
7] the following auxiliary results were proved:
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• The zeros of Ak(p+1), j, j=0, ..., p, are simple and belong to [0,+.);
• The zeros of Ak(p+1), 0 and A(k−1)(p+1), 0 as well as the zeros of Ak(p+1), 0

and Ak(p+1), j (for any j between 1 and p) interlace.
These properties are also true for n=k(p+1)+l with l ¥ {1, ..., p}. In fact,
for each xi, m, 1 [ i [ m, one has (see [3, Lemma 5])

Ak(p+1)+l, 0(xi, m) ·Ak(p+1), j(xi, m) < 0, l, j ¥ {1, ..., p}.

Taking into account the interlacing properties of the zeros of Ak(p+1), 0 and
those of Ak(p+1), j, we conclude that the zeros of Ak(p+1)+l, 0 are simple and
belong to [0,+.) .

Thus, for each fixed j one has

S jn(z)=C
m

i=1

m ji, m
z−xi, m

, 1 [ j [ p, m=m(n), (11)

where m ji, m > 0. Indeed, from the interlacing properties of the zeros it is
easy to check that

m ji, m=
An, j
A −n, 0

(xi, m) > 0.

Let K be a fixed compact subset of C0[0,.) and

g=dist(K, [0,.))=min{|z−l| : z ¥K, l ¥ [0,.)},

then we have g > 0. From (11) we obtain

|S jn(z)| [
1
g
C
m

i=1
m ji, m, j=1, ..., p, m=m(n), z ¥K.

To see that {;m(n)
i=1 m

j
i, m}n is bounded we write

S jn(z)=
c jn, 0
z
+
c jn, 1
z2
+·· · ,

where c jn, 0=;m(n)
i=1 m

j
i, m . Then

c jn, 0=lim
zQ.
zS jn(z),

and thus, considering (10), we obtain that

c jn, 0=1, n ¥N, j ¥ {1, ..., p},

from where one concludes that each component of Sn
|Q

)n \ 0 is uniformly
bounded on K. In order to analyze the pointwise convergence of every
component of Sn

|Q

(x)=(S1n(x), S
2
n(x), ..., S

p
n(x)) for a fixed x on (−., 0),

we put Sn=S
1
n(x) and without loss of generality we restrict our attention

to the convergence of the sequence (Sn)n \ 0. First we write (7) in an
equivalent form
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SF(z)=
1

(0, ..., 0, b1z)+
1

(0, ..., 0, b2)+z+
1

(0, ..., 0, bp+1)+
1

(0, ..., 0, bp+2z)+z

,

(12)

with

an=−
1

bnbn+1 · · · bn+p
. (13)

Notice that for p=1 we obtain the classical Stieltjes fraction (1). For each
fixed x ¥ (−., 0) we define the positive real numbers

bn(x)=˛
bnx, for n — 1 (mod p+1),

bn, otherwise.
(14)

For shortness, in what follows we will write bn=bn(x), so that bn > 0 for
every n ¥N . For the denominators Dn=Dn(x) of Sn written in the new
equivalent form (12), we have the recurrence relation

Dn=bnDn−1+Dn−p−1, (15)

with the initial conditions D0=1, D1=b1, D2=b1b2, ..., Dp−1=b1b2 · · · bp−1.
Writing

tn=bn
Dn−1

Dn
, n \ 1, (16)

we have that t1=t2=...=tp=1 and

0 < tn < 1, n > p. (17)

From (15) we obtain the recurrence

Sn=tnSn−1+(1−tn) Sn−p−1, (18)

with the corresponding initial conditions for S0, ..., Sp. We define the
sequences

Mn=max{Sn, Sn−1, ..., Sn−p},

mn=min{Sn, Sn−1, ..., Sn−p}.
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Taking into account the convexity relation (18), it is easy to see that the
sequences {mn} and {Mn} satisfy

0 [ mn [ mn+1 [Mn+1 [Mn [Mp, n ¥N.

Thus there always exist positive real numbers m, M, with m [M, such that

lim
nQ.
Mn=M and lim

nQ.
mn=m.

Denoting dn=Mn−mn, one observes that Sn converges if and only if

lim
nQ.
dn=0. (19)

We will finish the proof of Theorem 1 using some auxiliary lemmas,
which will be shown below. In order to obtain the convergence of Sn, the
following inequality will be proved (see Lemma 1)

dn [ (1−tntn−1 · · · tn−p+1) dn−p, n \ 2p, dp > 0. (20)

Then (see Lemma 2), making use of the identity (13), it will be shown that
condition (9) implies

C
n
tntn−1 · · · tn−p+1=.,

thus obtaining the pointwise convergence of Sn
|Q

(x) for each fixed x on
(−., 0) . L

Now we will present the auxiliary lemmas we used on the previous proof.

Lemma 1. The inequality (20) holds for the sequences (dn)n \ p and (tn)n \ 1
defined previously.

Proof of Lemma 1. First, for the sake of clearness, we will prove the
lemma for the particular case p=2. The generalization to any p, which is
totally analogous, will be given below. Let

Xn=R
Sn

Sn−1

Sn−2

S ,
and put

Xn=WnXn−2,
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where

Wn=R
tntn−1 (1−tn) tn(1−tn−1)

tn−1 0 1−tn−1

1 0 0

S . (21)

We denote Wn=(w
i, j
n )i, j ¥ {1, 2, 3} and

Mn=max{Sn, Sn−1, Sn−2},

mn=min{Sn, Sn−1, Sn−2}.

Writing Nn={Sn, Sn−1, Sn−2}0{Mn, mn} we have that

Mn=a
0
nMn−2+a

1
nNn−2+a

2
nmn−2,

mn=b
0
nMn−2+b

1
nNn−2+b

2
nmn−2,

where

{a jn}(j=0, 1, 2), {b
j
n}(j=0, 1, 2) … {(w

i, j
n )}i, j ¥ {0, 1, 2},

and

C
2

j=0
a jn=C

2

j=0
b jn=1.

Since Nn ¥ [mn, Mn], there exists tn such that 0 < tn < 1 for n > 2 satisfying

Nn=tnmn−2+(1−tn) Mn−2.

Thus we obtain

Mn=(1−a
1
ntn−a

2
n) Mn−2+(a

1
ntn+a

2
n) mn−2,

mn=(1−b
1
ntn−b

2
n) Mn−2+(b

1
ntn+b

2
n) mn−2,

and we have

dn=(1−(a
2
n+b

0
n+a

1
ntn+b

1
n(1−tn))) dn−2, n \ 4, d2 > 0.
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Hence we obtain that

dn [ (1−min(w i0, j0n +w
i1, j1
n +w

i2, j2
n )) dn−2,

with i0 ] i1, j0 ] j1 ] j2, i2=i0 or i1. Taking into account inequality (17)
and the distribution of the entries in the matrix (21), it is easy to see that
the minimum on the right hand side of the previous inequality is reached
for the following sum of entries of Wn

w1, 1n +w
3, 2
n +w

3, 3=tntn−1.

Hence, we obtain the inequality

dn [ (1−tntn−1) dn−2, n \ 4, d2 > 0,

which proves (20) for p=2.
Now we present the generalization to any p. Let

Xn=R
Sn

Sn−1

Sn−2

x

Sn−p

S ,
and put

Xn=WnXn−p ,

where the square matrix Wn of order p+1 can be written, in a short way, as

Wn=R
W1, nUn

1 0
S . (22)

Here, the expression forW1, n ¥ Rp is

W1, n=R
tntn−1 · · · tn−p+1

tn−1tn−2 · · · tn−p+1

x

tn−j+1tn−j · · · tn−p+1

x

tn−p+1

S , 1 [ j [ p,

and Un is an upper triangular matrix of order p,
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Un=R
(1−tn) tn(1−tn−1) · · · tntn−1 · · · tn−j+2(1−tn−j+1) · · · tntn−1 · · · tn−p+2(1−tn−p+1)

0 1−tn−1 · · · tn−1 · · · tn−j+2(1−tn−j+1) · · · tn−1 · · · tn−p+2(1−tn−p+1)

x 0 x x

x z tn−j+2(1−tn−j+1)

1−tn−j+1 · · · tn−j+1 · · · tn−p+2(1−tn−p+1)

0

x x z x

tn−p+2(1−tn−p+1)

0 0 · · · 0 · · · 0 1−tn−p+1

S ,
with 2 [ j [ p. We denote Wn=(w

i, j
n )i, j ¥ {0, ..., p} and as before

Mn=max{Sn, Sn−1, Sn−2, ..., Sn−p}, &mn=min{Sn, Sn−1, Sn−2, ..., Sn−p}.

WritingN (1)n , N
(2)
n , ..., N

(p−1)
n ={Sn, Sn−1, Sn−2, ..., Sn−p}0{Mn, mn} we have

that

Mn=a
0
nMn−p+a

1
nN

(1)
n−p+·· ·+a

p−1
n N

(p−1)
n−p +a

p
nmn−p,

mn=b
0
nMn−p+b

1
nN

(1)
n−p+·· ·+b

p−1
n N

(p−1)
n−p +b

p
nmn−p,

where

{a jn}(j=0, 1, ..., p), {b
j
n}(j=0, 1, ..., p) … {(w

i, j
n )}i, j ¥ {0, 1, ..., p},

and

C
p

j=0
a jn=C

p

j=0
b jn=1. (23)

Since N (k)n ¥ [mn, Mn], k=1, ..., p−1, there exists t (k)n , 0 < tn < 1 for
n > p, such that

N (k)n =t
(k)
n mn+(1−t

(k)
n ) Mn, k=1, ..., p−1.

Considering (23) we have

Mn=11− C
p−1

k=1
aknt

(k)
n −a

p
n
2Mn−p+1 C

p−1

k=1
aknt

(k)
n +a

p
n
2 mn−p,

mn=11− C
p−1

k=1
bknt

(k)
n −b

p
n
2Mn−p+1 C

p−1

k=1
bknt

(k)
n +b

p
n
2 mn−p.

Thus we obtain

dn=1 C
p−1

k=1
(bkn −a

k
n) t

(k)
n +b

p
n −a

p
n
2 dn−p, n \ 2p, dp > 0.
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Making use again of (23) we have that

dn=11−(apn+b0n+C
p−1

k=1
(aknt

(k)
n +b

k
n(1−t

(k)
n ))2 dn−p.

Hence we obtain the inequality

dn [ (1−min(w i0, j0n +w
i1, j1
n +·· ·+w

ip, jp)) dn−p, n \ 2p, dp > 0, (24)

with i0 ] i1, j0 ] j1 ] · · · ] jp, i2, i3, ..., ip ¥ {i0, i1}. As before, taking into
account (17) and the distribution of the entries in the matrix (22), we verify
that the minimum on the right hand side of the inequality (24) is reached
for the following sum of entries of Wn

w1, 1n +w
p+1, 2
n +wp+1, 3+·· ·+wp+1, p+1=tntn−1 · · · tn−p+1 > 0.

Hence, we obtain the inequality (20) and the lemma is proved. L

Lemma 2. The following holds:

C
n

1

C
p−1

j=0

1
bn−jbn−j−1 · · · bn−j−p

=.S C
n
tntn−1 · · · tn−p+1=..

Proof of Lemma 2. Considering (16) we have that

tntn−1 · · · tn−p+1=bnbn−1 · · · bn−p+1
Dn−p

Dn
. (25)

From (15) it follows that

Dn=bnbn−1 · · · bn−p+1Dn−p+Dn−p−1+bnDn−p−2+bnbn−1Dn−p−3

+bnbn−1bn−2Dn−p−4+·· ·+bnbn−1 · · · bn−p+2Dn−2p.

Thus, from (25) it follows that

tntn−1 · · · tn−p+1=
1

1+
Dn−p−1

bnbn−1 · · · bn−p+1Dn−p
+·· ·+

Dn−2p

bn−p+1Dn−p

.
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From (15) we get

Dn−p−j

Dn−p
[

1
bn−p · · · bn−p−j+1

, 1 [ j [ p.

Hence we can conclude that

tntn−1 · · · tn−p+1 \
1

1+C
p−1

j=0

1
bn−jbn−j−1 · · · bn−j−p

,

and the lemma is proved. L

Remark 1. We point out that for p=1 the sufficient condition in
Theorem 1 turns out to be the known condition of the scalar casemen-
tioned before:

C
.

k=1

1
ak
=..

Remark 2. The divergence of this series also implies the convergence of
the vector continued fraction when the coefficients an have a ‘‘regular
behaviour,’’ for instance when the sequence an is monotone or has a
bounded rate of increase. There is an important fact that can be concluded
from Theorem 1. If the entries of the non-bounded operator (6) satisfy the
hypothesis of Theorem 1, then this operator has a unique set of spectral
data (the set of resolvent functions) which defines the operator in a unique
way. These last circumstances give a connection between the vector case
and the determinacy of the moment problem.

4. GENERALIZED STIELTJES CONVERGENCE CONDITION

Considering the equivalent form (12) of the Stieltjes continued fraction
(7), one finds that the classical Stieltjes convergence condition (2) remains
true in the vector case, as stated in the following theorem:

Theorem 2. For the vector Stieltjes continued fraction (12) one has

Sn
|Q

(z) —
nQ.
SF(z)S C

.

k=1
|bk |=., z ¥K ı C0[0,.),
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where

bk < 0 for k — 1 (mod p+1), bk > 0 otherwise.

Before proving Theorem 2 we will present some auxiliary results. We use
the same notation as in the proof of Theorem 1. We fix x ¥ (−., 0) and
write bn=bn(x), so that bn > 0 for every n ¥N, see (14). Analogously, let
Sn=S

1
n(x). Hence, we will prove that if Sn converges then

C
n
bn=.. (26)

We have the following lemmas:

Lemma 3. For the sequences (bn)n \ 1 and (tn)n \ 1, previously defined by
(14) and (16) respectively, one has

C
n
bn=.Z C

n
tn=..

Lemma 3 is a direct consequence of the following Lemma 4:

Lemma 4. Let (bn)n \ 1 be a sequence of positive real numbers and
(Dn)n \ 0 a sequence defined by the recurrence (15) with the same initial
conditions. Then

C
n
bn=.Z C

n

11−Dn−p−1
Dn

Dn−p−2

Dn−1
2=..

Proof of Lemma 4. First we will prove that

C
n
bn=.S C

n

11−Dn−p−1
Dn

Dn−p−2

Dn−1
2=..

Taking into account (15), we have

Dn > Dn−p−1, (27)

which implies that

Dn >min{D0, D1, ..., Dp} > 0,
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from which we obtain

C
n
bnD

2
n−1=. and C

n
bn−1Dn−2Dn−p−1=..

We will prove that there exists L1 …N such that

DnkDnk−1 |||Q
nk ¥ L1

.. (28)

From (15) it follows that

DnDn−1=bnD
2
n−1+bn−1Dn−2Dn−p−1+Dn−p−2Dn−p−1.

Thus

DnDn−1−Dn−p−2Dn−p−1=bnD
2
n−1+bn−1Dn−2Dn−p−1,

which implies

C
N

n=1
(DnDn−1−Dn−p−2Dn−p−1)=C

N

n=1
(bnD

2
n−1+bn−1Dn−2Dn−p−1).

We have

C
p

j=0
Dn−jDn−j−1 |Q

n
.,

hence there exists L1 …N such that (28) holds. Now we can suppose that

Dn−p−1

Dn

Dn−p−2

Dn−1
|Q
n
1, (29)

otherwise the proof would stop right here. From (29) we have that there
exists N0 ¥N such that

1 >
Dn−p−1

Dn

Dn−p−2

Dn−1
>
1
2
, n \N0.

Thus we obtain the inequalities

1−
Dn−p−1

Dn

Dn−p−2

Dn−1
>
1
2
1 DnDn−1

Dn−p−1Dn−p−2
−12

>
1
2

ln
DnDn−1

Dn−p−1Dn−p−2
.

114 M. CASTRO SMIRNOVA



Taking the sum we obtain

C
N

n=N0

11−Dn−p−1
Dn

Dn−p−2

Dn−1
2 > 1
2

C
N

n=N0

ln
DnDn−1

Dn−p−1Dn−p−2

>
1
2

ln
DND

2
N−1D

2
N−2 · · ·D

2
N−pDN−p+1

DN0 −1D
2
N0 −2 · · ·D

2
N0 −p−1DN0 −p−2

.

Considering (28) and taking into account that Dn > c > 0 for all n ¥N, we
have

DnkD
2
nk −1 · · ·D

2
nk −pDnk −p−1 |||Q

nk ¥ L1
..

Hence

C
.

n=1

11−Dn−p−1
Dn

Dn−p−2

Dn−1
2=..

In order to prove the other implication

C
n

11−Dn−p−1
Dn

Dn−p−2

Dn−1
2=.S C

n
bn=.,

we will prove that

Dn+Dn−1+Dn−2+·· ·+Dn−p |Q
n
., (30)

because one always has

bn >
bnDn−1

Dn−1+Dn−2+·· ·+Dn−p+Dn−p−1

=
Dn+Dn−1+·· ·+Dn−p

Dn−1+Dn−2+·· ·+Dn−p+Dn−p−1
−1,

and since Dn > Dn−p−1 one has

Dn+Dn−1+·· ·+Dn−p
Dn−1+Dn−2+·· ·+Dn−p+Dn−p−1

> 1.

Thus

Dn+Dn−1+·· ·+Dn−p
Dn−1+Dn−2+·· ·+Dn−p+Dn−p−1

−1 > ln
Dn+Dn−1+·· ·+Dn−p
Dn−1+Dn−2+·· ·+Dn−p−1

,
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and we obtain

C
N

n=p−1
bn > ln

DN+DN−1+·· ·+DN−p
Dp+Dp−1+·· ·+D0

.

If (30) holds, then the previous inequality would imply the divergence of
the series on the left hand side. Hence, to conclude the proof of this lemma
it only remains to check that (30) holds. We have that

1−
Dn−p−1Dn−p−2

DnDn−1
< ln

DnDn−1

Dn−p−1Dn−p−2
,

and therefore

C
N

n=p+2

11−Dn−p−1Dn−p−2
DnDn−1
2 < C

N

n=p+2
ln

DnDn−1

Dn−p−1Dn−p−2

=ln
DND

2
N−1 · · ·D

2
N−pDN−p−1

Dp−1D
2
p−2 · · ·D

2
1D0

.

Hence

DND
2
N−1 · · ·D

2
N−pDN−p−1 |Q

N
.,

and taking (27) into account, one finds

DNDN−1 · · ·DN−p |Q
N
.,

and we obtain (30). L

Proof of Lemma 3. Making use of the recurrence (15), we have

1−
Dn−p−1Dn−p−2

DnDn−1
=
Dn(Dn−1−Dn−p−2)+Dn−p−2(Dn−Dn−p−1)

DnDn−1

=bn−1
Dn−2

Dn−1
+bn

Dn−p−2

Dn

=tn−1+tn(1−tn−1).

From (17) one finds

C
n
tn=.Z C

n
(tn−1+tn(1−tn−1))=.,

and thus, from Lemma 4, we have that the present lemma is true. L
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Now we are ready to prove the theorem.

Proof of Theorem 2. We will prove the inequality:

dn+1 \ (1−tn+1) dn, -n ¥N. (31)

From the proof of Theorem 1 we know that if Sn converges then (19) holds.
Thus we would have the implication

lim
nQ.
dn=0S C

n
tn=.,

and from Lemma 3 we would obtain (26). To prove (31) we have to take
into account the set of indices on which dn and dn+1 depend, respectively.
We can write

dn ’ R
n

n−1

x

n−p+1

n−p

S and dn+1 ’ R
n+1

n

x

n−p+2

n−p+1

S .
Now, we will differentiate between the following cases:

Case 1. There exist j, k with 0 [ j, k [ p−1, j ] k, such that

dn=|Sn−j−Sn−k |.

Notice that this case only holds for p > 1. We have that Sn−p ¥
(Sn−j, Sn−k). Since {Sn, ..., Sn−p} … [Sn−j, Sn−k], considering without loss of
generality Sn < Sn−p and making use of (18) we have

Sn+1 ¥ [Sn, Sn−p] … [Sn−j, Sn−k].

Thus, we obtain

dn+1=dn > (1−tn+1) dn.

Case 2. There exists j with 0 [ j [ p−1, such that

dn=|Sn−p−Sn−j |. (32)

Thus

dn+1=|Sn−k−Sn−l |,
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where −1 [ k, l [ p−1, l ] k. Without loss of generality we can suppose
Sn−p > Sn−j, where Sn−j is such that (32) holds. Making use of (18) we have
that

Sn+1 ¥ [Sn, Sn−p] … [Sn−j, Sn−p],

and hence

{Sn−p+1, ..., Sn, Sn+1} … [Sn−j, Sn−p].

Thus

dn+1=|Sn−k−Sn−j |

where Sn−j is the one from (32) and k is such that −1 [ k [ p−1, k ] j.
We have the following situation:

Sn−j [ Sn < Sn+1 [ Sn−k < Sn−p.

One has

dn+1=Sn−k−Sn−j=Sn−p−Sn−j−(Sn−p−Sn−k),

hence

dn+1=dn+(Sn−k−Sn+1)−(Sn−p−Sn+1),

and we obtain

dn+1 \ dn−(Sn−p−Sn+1). (33)

Making use of (18) for Sn+1, we have that

Sn+1−Sn−p=tn+1(Sn−Sn−p).

Thus

|Sn+1−Sn−p | [ tn+1dn.

Considering (33) we have

dn+1 \ dn(1−tn+1).

Having proved (31), we conclude that Theorem 2 holds. L
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